Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0000000000000 00000000

Pt FT s

=

AL
COMP316/qi64

Concepls of Frogormming Lorgueys
Hindley-Milner Type Inference

Rob Sison
UNSW
Term 3 2024

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
90000000 0000000000 0000000000000 00000000

Implicitly Typed MinHS

Explicitly typed languages are awkward to usel. Ideally, we'd like
the compiler to determine the types for us.

Example
What is the type of this function?

recfun f x =fst x +1

We want the compiler to infer the most general type.

1See Java

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0e00000 0000000000 0000000000000 00000000

Implicitly Typed MinHS

Start with our polymorphic MinHS, then:
@ remove type signatures from recfun, let, etc.

@ remove explicit type abstractions, and type applications (the
© operator).

@ keep V-quantified types.

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0e00000 0000000000 0000000000000 00000000

Implicitly Typed MinHS

Start with our polymorphic MinHS, then:
@ remove type signatures from recfun, let, etc.

@ remove explicit type abstractions, and type applications (the
© operator).

@ keep V-quantified types.

@ remove recursive types, as we can't infer types for them.

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 000000000000000000000

Typing Rules

x:Ttel
MN=x:71

Implicitly Typed MinHS Inference Algorithm Concerns
00@0000 0000000000

Typing Rules

x:Ttel

— VAR
MN=x:71

l+e:m—m NhFe:'n

Fl—eleg:v-g

Aprp

Inference, Unification Examples
0000000000000 00000000

Implicitly Typed MinHS Inference Algorithm Concerns
00e0000 0000000000

Typing Rules

x:Ttel
— VAR
MN=x:71
l+e:m—m NhFe:'n
App
Fl—eleg:v-g
ltFee:mm The:nm
Conyy

It (Pair e; &) : 11 X T

Inference, Unification Examples
0000000000000 00000000

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
00e0000 0000000000 0000000000000 00000000

Typing Rules

x:Ttel
— VAR
MN=x:71
FFe1:71—>72 FFGQZTl
App
r|—61 € 1 T2
lt+e1:m ThHe:m
Conyy

It (Pair e; &) : 11 X T

[Fe:Bool ThHe:7m Thes:T

Ir
NF(Ifep e es):r

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
000e000 0000000000 0000000000000 00000000

Primitive Operators

For convenience, we treat prim ops as functions, and place their
types in the environment.

(+) : Int — Int — Int,[(App (App (+) (Num2)) (Num 1)) : Int

Implicitly Typed MinHS Inference Algorithm Concerns
0000800 0000000000

Functions

x:1,f:m1 >, Fe:m

I (Recfun (f.x. €)):1 — 7

Inference, Unification Examples
0000000000000 00000000

Func

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
00000e0 0000000000 0000000000000 00000000

Sum Types

lFe:n
DisJn
lEInLe:m+7m
lFe:m
DisJps

lEInRe:m +m

Note that we allow the other side of the sum to be any type.

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
000000e 0000000000 0000000000000 00000000

Polymorphism

If we have a polymorphic type, we can instantiate it to any type:

N e:VarT

ALL
MN-e:rla:=p) B

Implicitly Typed MinHS

orithm Concerns
000000e o]

Polymorphism

If we have a polymorphic type, we can instantiate it to any type:

N e:VarT

ALL
MN-e:rla:=p) B

We can quantify over any variable that has not already been used.

Fce:r ag¢ TV(I)

ALL;
e:Va. T

(Where TV(T) here is all type variables occurring free in the types
of variables in I")

Implicitly Typed MinHS Inference Algorithm Concerns
0000000 ©000000000

The Goal

We want an algorithm for type inference:
@ With a clear input and output
@ Which terminates.

o Which is fully deterministic.

Inference, Unification Examples
0000000000000 00000000

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0®00000000 000000000000000000000

Typing Rules

e The:nm

I (Pair e; &) : 71 X T

Can we use the existing typing rules as our algorithm?

infer :: Context — Expr — Type

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0000000000000 00000000

Typing Rules

e The:nm

[+ (Pair e;) : 71 X T2

Can we use the existing typing rules as our algorithm?

infer :: Context — Expr — Type

This approach can work for monomorphic types, but not
polymorphic ones. Why not?

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 00@0000000 0000000000000 00000000

First Problem

Fe:Var
LL
M-e:rla:=p) B

The rule to add a V-quantifier can always be applied:

I+ (Num 5) : Va. Vb. Int
[+ (Num 5) : Vb. Int
[+ (Num 5) : Int

LLg

ALLg

Read as an algorithm, the rules are non-deterministic — there are
many possible rules for a given input. A depth-first search strategy
may end up attempting infinite derivations.

tly Typed MinHS Inference Algorithm Concerns
000 0008000000

Another Problem

lFe:Var
L
M-e:7la:=/p]

LE

The above rule can be applied at any time to a polymorphic type,
even if it would break later typing derivations:

[-fst:Va. Vb. (ax b) — a
I fst: (Bool x Bool) — Bool [(Pair 1 True): (Int X Bool)

[+ (Apply fst (Pair 1 True)): 777

We need a way to capture the dependency between the parts of
this derivation!

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000@00000 0000000000000 00000000

Yet Another Problem

The rule for recfun mentions 7 in both input and output positions.

XZT1,f271—>7'2,|_|—627'2

Func
It (Recfun (f.x. €)):11 — 7

In order to infer 7 we must provide a context that includes 7 —
this is circular. Any guess we make for 75 could be wrong.

Inference Algorithm Concerns

Solution: Unknowns and Unification

We allow types to include unknowns, also known as unification
variables or schematic variables. We will call them flexible (type)
variables. These are placeholders for types that we haven't worked
out yet. We shall use o, 3 etc. for names of type variables, of, 3%
for flexible type variables, and of, 5® for rigid type variables
(bound by V-quantifiers).

Example

(Int x of) — 5 is the type of a function from tuples where the
left side is Int, but no other details of the type have been
determined vyet.

As we encounter situations where two types should be equal, we
unify the two types to determine what the unknown variables
should be.

Inference, Unification Examples
O0O0C 00000e0000 00000000000 0000000000

Inference Algorithm Concerns
0000008000

Unification

Our rules for unification will be specified by the judgement:

I‘1|—71~72:>F2

which are defined such that:

© [1 and I'; contain the same type variables;

@ [, is more informative than I'; in the sense that declared type
variables have been given definitions in order for 7, ~ 7 to
hold: I'1 E I'2

© The information increase is minimal (most general) in the
sense that it makes the least commitment in order to solve the
equation: any other solution ['; C [’ factors through 'y C I'.

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
[o]e] o 0000000e00 ()

Back to Type Inference

To keep track of the solutions to unification problems in context,
we will decompose the typing judgement to allow for an additional
output — an updated typing context which represents the minimal
information increase over the input context (obtained via
unification rules!) in order to infer the type of the expression.

Inputs Expression, Context
Outputs Type, Context

We will write this as ' - e = 7 - T, to make clear what are the
inputs and outputs.

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000080 0000000000000 00000000

One More Concern: Generalisation

FN-e:7 a¢ TV()
Fe:Va T

ALL;

We can generalise a type to a polymorphic type by introducing a V
at any point. We want to restrict this to only occur in a
syntax-directed way.

Consider this example:

let f = (recfun f x = (x,x)) in (fst (f 4),fst (f True))

Where should generalisation happen?

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 000000000e 000000000000000000000

Solution: Let-generalisation

To make type inference tractable, we will generalise only in let
expressions.

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 000000000 e 0000000000000 00000000

Solution: Let-generalisation

To make type inference tractable, we will generalise only in let
expressions.

This means that let expressions are now not just sugar for a
function application. They actually play a vital role, as the place
where generalisation happens.

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 @®00000000000000000000

The New Type Inference Judgement
MFe= 140>

Purpose Keep track of the solutions to unification problems in
context;

Output context represents minimal information
increase over the input context in order to infer the
type of the expression.

Inputs Expression, Context
Outputs Type, Context

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 000000000 000000000000

Inference Example

Aprp
?

I+ Apply fst (Pair 1 True) =7 -7

Implicitly Typed MinHS
0000000

Inference Algorithm Concerns
0000000000

Example Part 1

PRrIM

M-fst =747

Inference, Unification Examples
00@000000000000000000

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0000000000000 00000000

Example Part 1

PRrIM
primOpType(fst) = Va .(a® x B*) — o

M-fst =747

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0000@0000000000000000

Example Part 1

PriMm
primOpType(fst) = Va f.(a® x %) — of

FEfst= (" xF) = af 4T -a B

NB: Must introduce fresh names for the flexible type variables («,
3 reused here just for convenience!)

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0O0000@000000000000000

Example Part 2

PriM
primOpType(fst) = Va f.(a® x %) — o

FTEfst= (" xBF) = 4T -a B

=T-a-8

Prop
[hbF1=Intdl, T[>F True =— Bool 41>

Fo-pF pf ~Int x Bool = > - p = Int x Bool

M F (Pair 1 True) = p" T, p:=Int x Bool

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 000000@00000000000000

Example Part 3

3 =T5-p:=Int x Bool
App
MEfst = (af x 8F) = af 4Ty Ty (Pair 1 True) = p" T3
M-wk (@ xgF)=af ~pf »uf =7
I+ Apply fst (Pair 1 True) =7 47

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0000000 @0000000000000

Example Part 3

3 =T2-p:=Int x Bool

M wrkaf xF~npf =7 72~ =7
3 p

Mwhk (@ xfF)—=af ~pf = uf =7

Implicitly Typed MinHS Inference Algorithm Concerns

Example Part 3A
F2 = Tl «a- ﬁ
3 = TIy-p:=Int x Bool
F4 = F3 %

MbEInt~af =7 ?FBool~pf =7
M- []F Int x Bool ~ of x fF =7
T3 [1Fp" ~af xgf =7

SUBST

Fa | [JF /F ~of x 7 — 7

Inference, Unification Examples
000000008000000000000

SKIP-TY
INST

Mok of x F ~ pf =7

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples

Example Part 3A
M = T-a-p
3 = TIy-p:=Int x Bool
F4 = F3 %

Mk Int~af =7 ?F Bool ~ fFf =7

M+ Int x Bool ~ af x gFf =7
| [JFpf ~af xBF =7
Fa|[]Fp° ~af xBF =7

My af xF~pf =7

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples

Example Part 3A
3 = TI,-p:=Int x Bool
F4 = F3 W

MEInt~of = T5 7+ Bool ~ Ff =7
M+ Int x Bool ~ af x gFf =7
F3|[]Fpf ~af xpgF =7
Fa|[1FpfF ~af xgF =7
My af xF~pf =7

Inference, Unification Examples

Inference Algorithm Concerns
00000000000 e000000000

Implicitly Typed MinHS

Example Part 3A
M = [a-fB s, = MNa:=Int-g8
3 = ly-p:=IntxBool ¢ = [-a:=Int-p:=Bool
F4 = F3 - W

Mk Int~aof = T5 [5F Bool ~ F =T
[F Int x Bool ~ of x gFf = T
F3|[]Fpf ~af xpgF =7
Fa|[1FpfF ~af xgF =7
My af xF~pf =7

Inference Algorithm Concerns Inference, Unification Examples

Implicitly Typed MinHS
00000000000 0e00000000

Example Part 3A
h = lNa-8 s = MNa:=Int-p
3 = ly-p:=IntxBool ¢ = [-a:=Int-p:=Bool
M, = M3 -w 7 = TIg-p:=Int x Bool

Mk Int~aof = T5 5+ Bool ~ F =T
[F Int x Bool ~ of x gFf = T
3| []FpF ~af xgF =T7
Fa|[JFpf ~af xBF =T7 w
r4|—an><BF~pF:>I_7-w

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0000000000000 e0000000

Example Part 3

F4 = F3 W
6 = T-a:=Int-F:=Bool
7 = T6-p:=Int x Bool

r4|—aFXﬂF~pF:>r7-w 2Fof v W=7

Mok (f x BF) = of ~pf —Wf =7

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0000000000000 0e000000

Example Part 3B

F4 = F3 W
6 = I-a:=Int-[:=Bool
7 = TIg-p:=Int x Bool

r4|—anﬁF~pF:>I_7-w M7 -wkaf ~of =7

Mok (f x BF) = of ~pf —Wf =7

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0000000000000 00e00000

Example Part 3B

F4 = F3 W

6 = I-a:=Int-3:=Bool
7 = TIg-p:=Int x Bool

g = M7 -w:=af

AFaf xBFnpf =T7-w T7-wkadf ~uf =Ty

F4I—(anBF)—>aF~pF—>wF:>I_8

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0000000000000 000e0000

Example Part 3

—
I
I

F3-w
6 = I-a:=Int-3:=Bool

6 - p:=Int x Bool
F

_|
3
I

g = [7-wi=«

aFa" xBFnpf =T7-w T7-wkadf ~uWf =Ty

TaF (f x BF) = af ~pf —Wf =T

g = l-a:=Int-3:=Bool-p:=Int x Bool - w:=aFf

Inference, Unification Examples

Inference Algorithm Concerns
0000000000000 0000e000

Implicitly Typed MinHS

Example
N = a8
3 = I-a:=Int-F:=Bool:p:=Int x Bool
g = l-a:=Int-3:=Bool:p:=Int x Bool - w:=aFf
App

MEfst = (of x 5) = af 4T TaF (Pair 1 True) = p" -3
M-whk (of x BF) = of ~pf = wf = T3
I+ Apply fst (Pair 1 True) = 7 47

Inference, Unification Examples

Implicitly Typed MinHS Inference Algorithm Concerns
0000000 0000000000 000000000000000000800
Example
N = la-B
3 = I-a:=Int-F:=Bool:p:=Int x Bool
g = l-a:=Int-3:=Bool:p:=Int x Bool - w:=aFf
App

MEfst = (of x 5) = af 4T TaF (Pair 1 True) = p" -3
M-whk (@ xfF) = af ~pf = uwf =Ty
[F Apply fst (Pair 1 True) = " 4Ty

Implicitly Typed MinHS Inference Algorithm Concerns Inference, Unification Examples
0000000 0000000000 0000000000000 000000e0

Unification Example

Demo: See Notes on course website after the lecture.

Inference, Unification Examples
00000000000000000000e

Summary

o We've started examining a variant of algorithm W (originally
due to Damas & Milner, variant thanks to Gundry) for type
inference which tracks flexible variables and their
instantiations using typing contexts;

@ This algorithm is restricted to the Hindley-Milner subset of
decidable polymorphic instantiations, and requires that
polymorphism is top-level — polymorphic functions are not
first class;

@ The rest of the rules will be given in the specification for
Assignment 2 — out soon.

	Implicitly Typed MinHS
	

	Inference Algorithm Concerns
	

	Inference, Unification Examples
	

